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ABSTRACT 

We use the integral geometric formulas in the symplectic space of geodesics 

of a Riemannian manifold to derive various inequalities of isoperimetric 

type. We give a sharp lower bound for the area of the minimal bub- 

ble spanning a spherical curve in •3 We also present an "inverse Croke 

inequality" relating the area of the boundary of a complex domain in a 

Riemannian manifold to the injectivity radius and the volume of the do- 

main. We prove a sharp lower bound for the ground state of the harmonic 

oscillator operator in L2(M), where M is a Hadamard manifold. 

0. 

By affine symplectic geometry we mean the circle of ideas concentrated around 

the two following principles: 

(1) The space of extremals of u given variationM problem carries the natural  

symplectic structure; 

(2) The trajectories of a Hamiltonian system, lying on the fixed energy level 

surface, are determined by this surface rather than by the whole Hamiltonian. 

To a certain extent, we are able to replace some "metric" considerations by 

the "affine" ones. In this paper we study the geometric aspects of the subject. 

That  is, we apply the natural symplectic structure in the space of geodesics of a 

given Riemannian metric wherever this space is a well-defined manifold to obtain 
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various geometric inequalities. This approach was already successfully applied by 

C. Croke [Crl], [Cr2] and M. Berger [Ber2], [Be]. In view of further developments 

and generalizations we reproduce some basic integral geometric formulas [San] 

from our point of view. The author wants to acknowledge the influence of the 

beautiful books [Be], [G-S], [B], [San] on the philosophy involved. He is also 

grateful to Professor Yu. Burago, who pointed him in the direction of Croke's 

work [Crl] where the proof of the 4-dimensional isoperimetrical inequality can 

be found similar to the author's own IRe1]. The results discussed here are the 

developments of the study started in [Re1], [Re2]. They were reported at the 

Burago-Zalgaller geometric seminar (LOMI, Leningrad) and the Lindenstrauss- 

Milman GAFA Israeli seminar, Tel Aviv. The author thanks the participants for 

discussion and G. Perelman for help with the proof of the lemma in Theorem 11. 

He is also very grateful to the referee for valuable remarks. 

LIST OF RESULTS. 

We present a higher dimensional Riemannian analogue of the Pohl formula 

(Proposition 3), a sharp estimate from below of the area of a surface whose bound- 

ary is a fixed curve in the convex surface in R 3 (which implies also well-known 

isoperimetric inequalities) with some non-sharp higher-dimensional version (The- 

orems 4, 4', 5), an inverse Krasnoselskii inequality for star-shaped subsets of a 

given domain (Theorem 6), a universal bound from above on the area of the 

boundary of a convex domain in terms of the volume and the injectivity radius, 

see Theorem S (the estimate from below was obtained by C. Croke, see [Cr2]). 

We also give an estimate of the first eigenvalue of the Dirichlet problem in the 

case of non-positive curvature and a sharp estimate of the first eigenvalue of the 

harmonic oscillator operator in a Hadamard manifold (Theorems 10, 11). We 

refer to IRe3] for the relation to the generating objects of symplectomorphisms 

of coadjoint orbits in real Lie algebras and to [Re4] for the construction of new 

metrics with integrable geodesic flow. 

o 

Let X be a closed compact domain with the smooth boundary in some Rieman- 

nian manifold of M of dimension n. We will call X convex if every two points 

of X can be joined by a unique geodesic segment lying in X, and if this geodesic 

segment is length-minimizing and its interior points lie in IntX = X ,-, aX. It 

easily follows that X is diffeomorphic to the unit n-dimensional ball D, .  Let 
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C X  be the set of all geodesics in M having nonempty intersection with X. It 

is clear that C X  is a union of two sets which are in one-to-one correspondence 

with X x X ,,, A and U(OX), respectively, where A is the diagonal and U(OX) 

is the unit tangent bundle. 

PROPOSITION 1: C X  carries a natural  smooth structure and is diffeomorphic to 

the unit disk tangent bundle over OX. 

Indeed, it is sufficient to note that C X  can be looked at as a result of a a- 

process in every point of OC. 

PROPOSITION 2: There exists a natural symptectic structure on C X .  

Proof: Let H : T * X  -+ R be the energy function determined by the Riemannian 

metric. We can consider U(X)  to be a level hypersurface of H,  if we identify 

naturally the tangent and cotangent bundles (see [Be]). Then the space C X  is 

identified with the result of the Weinstein-Marsden reduction (see [Ar]), and thus 

carries the symplectic structure, say w. We will denote by ~r : U (X)  --+ C X  the 

natural projection and by a the Liouville 1-form on U(X),  so da = ~r*w. 

PROPOSITION 3: Let Y C X be a dosed submanifold, dim Y = k. Consider a 

natural map r : ( Y  x Y )  ,., A -+ C X ,  where r(y l ,y2)  is the geodesic segment 

with the ends W, Y=. Then frxY~gx(r*w) k = C(k)VolkY.  The constant C(k)  is 

equal to k!Volk(Dk). 

Proof." As before, we can consider Y x Y ,,, A as an interior of a compact 

manifold Y x Y with boundary O(Y x Y) ,  which is naturally diffeomorphic to 

U(Y) .  The natural map ~ : Y x Y ~ C X  admits the following decomposition: 

U X  

(1) Nf 1 Y x Y  

CX 
where 0"(yl,y2) iS the unit vector in Ty~X, tangent to the geodesic segment 

 (yl,y2). H e n c e  = = so  = ^ B y  t h e  

Stocks formula we have 

f~.~(~'~) '  = fv(y)a*(a A (da)'-a) • 
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Note that there is the natural embedding, which we also denote a, from U(Y) to 

U(X), and the Liouville form a behaves as a functorial object, i.e. a*o~x = o~r, 
to the last integral is equal to fu(v) av ^ (day) k-1 = C(k)Volk(Y) (see [Be D. 

Remark: In the case X = R" the statement of Proposition 3 is known as Pohl's 

formula (see [P]). 

Applying our result to Y = OX we obtain the following 

PROPOSITION 4 (Santalo's formula): 

(2) [ = c ( n  - 1)Vol ._l (0x) .  
J c  x 

THEOREM 1 ("Archimedes" inequality): If Za C_ Z2 are two convex domains in 
X, then Vol,,_1(OZa) _< Vol,_~(0Z2). 

Proof." This is an immediate corollary of (2). 

Consider an absolutely integrable function f : U(X) --* C. By the Fubini 

theorem we have 

(3) /u(x) f " a A (da)n-1= / c x  ( ~  f(x, v)dg(x)) w "-l,  

where 7 E CX is a geodesic segment, x E 3', (x, v) means the unit tangent vector 

to 3' at x, and dg(x) is the length element on 7- Putting f _= 1, we obtain 

PROPOSITION 5 (Crofton formula): 

(4) [ g(7)w"- '  = C(n)Vol,(X), 
J c  x 

where g(~) is the length of the segment 7. 

THEOREM 2 (C. Croke): If Z C X is a convex domain in X, then 

(5) Vol.(Z) < c ( n  - 1) 
- C(n) " diamZ.  Vol ,_I(0Z).  

Proof: It's enough to combine (4) and (2), and to note that g(7) -< diamZ. 

Let Q be a (n - 1)-dimensional hypersurface in IntX. Let b'(Q) denote the 

restriction of the bundle U(X) to Q. Suppose q E Q and (q,v) E ~r(Q) and 

denote by 7r(q,v) the geodesic in CX, tangent to (q, v). As in (1) it follows 

that zr*w = da[o(O ). Consider the fibered orthogonal projection r t : ~'(Q) 
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TQ, then, similar to what was said before a[O(O ) = T/*aq, where aQ is the 

Liouville form in TQ itself. It follows that (Tr*w) n-I = 7}*(daQ) "-~. Note that 

(daq)  n-1 is the canonical volume form in TQ (see [Be]), and admits the following 

decomposition: (d,~Q) n-1 = (n - 1)!dw A dq, where dw is any (n - 1)-form, 

whose restriction of TqQ is equal to the euclidean volume form, and dq is the 

Riemannian volume form on Q. Let dv be any (n - 1)-form on U(Q), whose 

restriction on UTq(X) coincides with the spherical volume form, then it is clear 

that rl*(daQ) n-1 --- (n - 1)[ cosO(v)dv A dq, where O(v) is the angle between v 

and the positive normal n(q) to Q at q (we assume X and Q to be oriented). So 

we obtain the following 

PROPOSITION 6 (Birkhoff formula): On ~J(Q) we have 

(6) = - 1)! cos O(v)d, ^ dq. 

Of course, (6) implies (2). Moreover, it's easy now to obtain the following 

PROPOSITION 7: For 7 E C X  let d.t, Q be the number # ( 7  Iq Q). Then 

1 f c  d w n-I (7) Voln_,(Q) = 2 C ( n -  1) x %0 • 

We need some more formulas, expressing the volume form w n-1 on C X  via 

more usual forms and measures. Recall that, given two points yl, Y2, we denote 

by r(y~,y2) the geodesic, joining y~ and y2. Let Wi, i = 1, .. . ,n - 1, be Jaeobi's 

fields a long  r ( m , U 2 ) ,  such that  Wi(UI)  = 0 and eovariant derivatives W[(y~) 
form the orthonormal base in T~tX along with the tangent vector to r(yl, y2). 
We denote 

(8) 

where the right side means the volume of the spanned parallelotope. Recall 

([Bu-Za]), that J(yl, y2) is equal to the Jacobian of the exponential map exp : 

T X  ~ X in the appropriate point, and that J(yl, Y2) = J(Y2, yl). 

PROPOSITION 8: (n-- 1)!dyl A dy2 -= J(yl, y2 )di(yl ) A dg(y2 ) A r* w n-l on IntX x 

IntX,  where d~(yl) A d£(y2) is any 2-form, whose restriction on any fiber r -1(7)  

coincides with the euclidean area form on the :fiat square. 

Proof: It follows immediately from the explicit expression for w in terms of 

Jacobi's fields (see [Be]). 
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As a corollary we obtain 

and we note that  r(yl,Y2) = 3' is equivalent to yl,y2 E r .  In the case of a flat 

X C_ R",  (9) takes the form (Crofton) 

(10) (n ) 2 1 /c g " + ' ( 7 ) w " - "  - 1 ) . V o l . X  - n (n  + 1~ X 

Now suppose Yl, Ya lie on the fixed hypersurface Q. In what follows it is more 

convenient to denote qi = Yi. 

PROPOSITION 9: 

dql A dq2 = 1 g(ql,q~) r*w "-1 on Q x Q, 
(n - I ) !  cos 0(q,)-  cos 0(q2) 

where 0(ql) = O(vl), vl tangent to r(qi,q2) at q~, and the same for q2. 

Proof: It easily follows from Proposition 8. 

As a corollary we obtain 

1 f (11) Vol~,_l (OX) 
- ( n  - i)! J c x  

where ql and q2 are the ends of 7 E C X .  

In the flat case X C R" we obtain 

(12) 

J(ql,q2) w , - i  
cos 3 -s O( q2 ) ' 

c g,,-I 7 
1 ~(7) w.-I 

V°I '~ '- ' (0X) - (n - 1)! x cosO(ql)eosO(q2) " 

2. 

We are not in a position to make use of the fornmlas above. 

THEOREM 3: Suppose X to have non-positive curvature. Then for some constant 

B (n  ) the classical isoperimetrical inequality holds: 

(13) V o l . ( X )  < B(.)(VoI,,-I(OX))"/("-I)o 

When n = 2,4, then the same inequality holds with the sharp constant 

n " / O - " ) ( V o l , (  D ,  ) )' /O-") .  

Proof." The  proof is the consequence of (2), (4), (10), the HSlder inequality and 

the Rauch inequality J(y{, Y2) >_ p"-a(y{,y2),  where p(., .)  denotes the distance 
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function related to the metric. We omit the details because, as it was said, similar 

arguments can be found in [Crl]. See [ael] also. 

A definite gap in orders o f / (7 )  in the formulas (2), (4), (10) is felt when 

attempting to get the sharp constant in (13) for n > 4. It is not clear whether 

this gap can be filled with extra formulas of this type. 

The following theorem gives the sharp estimate from below of the volume of a 

bubble, spanned on a given curve. 

THEOREM 4: Let  ~ be a simpte dosed  curve in the s tandard sphere S 2 C ]R 3. 

Let F1, F2 be the areas of  the two components  Y1, ]"2 of  S 2 ,~ /3. Let  Q be any 

(14) Vol2(Q) > F1 - F2 - F1F2 
- 4r  47r 

Remark:  Take the minimal bubble Q. Then by the isoperimetrical inequality 

for the hyperbolic surfaces (see Theorem 3 above or [Bu-Za]), 

Vol (O) _< 

Together with (14) this gives the spherical isoperimetrical inequality. 

Proof.." Let R C CR s be the set of all straight lines, linked wi th/L Then by (7), 

1£ Vol2(Q) _> J ,  

because for every ~, E R, 7 Cl Q ¢ 0. From the other side it is clear that 7 E R if 

and only if d~,r~ = d-y,r2 = 1. Applying (7) to II1 we see 

F1 = ~ ,,vl =1 ,,Y1 =2 , 

S O  

1 ~ w2" Vol (O) > - 

Let us use Proposition 9 to compute the last integral: 

/y, c°s O( yl ) c°s tg( Y2 ) dy, 
w 2 = 2 A dy2, 

~.vl =2 xYl p2(yl, Y2) 

smooth  surface in R 3 with OQ = ft. Then 
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where P(yl, y2) is the distance in R s. Elementary geometry shows that 

cos  0 ( y , )  = cos  0(~2)  = p (~ l ,  y2) 
2 

hence t 2 w2 ]F~.  II 
.t d .y  , y l  = ~ -  

If we replace S 2 by any convex surface M, we will obtain similar results in- 

volving the curvature of M. 

THEOnEM 4': (a) Suppose all the main curvatures Ai(M), i = 1,2 are bounded 

by I from below everywhere in M, then, using the same notations 

FIF2 
Vol2(Q) _> 4---~- 

(b) Suppose Ai(M) are bounded by 1 from above, then 

F? 
V o 1 2 ( 0 )  >_ F1 - 4-7' 

Remark: Again applying this to the minimal bubble, we will obtain in ease 

(a) Paul L4vy's isoperimetrical inequality in dimension 2, and in case (b) the 

isoperimetrical inequality 
Vol~(fl) _> F , -  F12 

41r 4~r 
(see [Bu-Za]). 

Proof." We begin with (b) and act as in the previous theorem. To obtain the 

estimate of 
J = fy, c°sO(y')c°sO(y~ldy~ ^ dy2 

× Y ,  P2(Yl,Y2) 
we note that by the Blaschke theorem (see [B]), P(Y,,Y2) >_ 2cosS(yi),  i = 1,2. 

Thus we have J < 1 2 _ ~Fi ,  which proves our statement. 

In the case (a) we note that 7 6 R if and only if d%y 1 = d.~,y 2 = 1, hence by 

Proposition 9, taking into account the possibilities Yl 6 I"1, y2 6 Y2 and Yl 6 Y2, 

Y2 6 111, we have 

cos  0 ( w )  cos  o(w), 

Again using the Blaschke theorem, now in the form p(yl, y2) < 2cos 8(yi), we 

obtain f nw  2 >_ F1F2. | 

In higher dimensions we obtained the following estimate, which is not sharp. 
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THEOREM 5: Let/3 be the smooth embedded ( n -  2)-dimensional sphere S "-1 C 

R", and let F1, F2, Q be as in the previous theorems, then 

Vol._ (Q) > F1 - C( , , )F?- ' ,  

where 

= , ,  , , ,-, , (nVol,)(Dn)) z:-~-~ • G(n) 1 .-a 
VOIn--1 ~,/-.)n -- 1 ) 

Proof." As before, we reduce the statement of the theorem to the estimating of 

the integral 
rl COSO(yl )COSO(y2)" I = p,,_l(y~,y2) ayl A dy2. 

xZ 

Fix Yl and denote P(yl, y2) = p(y2), then cos O(yl ) = cos O(y2) = ½p(y2). As 

dy2 eos0(y2) = p"-a(y~,y2)dv (here dr, as before, is the spherical volume form 

in UTy I R"), we have 

Fl = / y  dy2 = 2 / Pa-2(V) dv 

hence 

K < ~ I ( ~ - )  "-~ x ( V ° I " - ~ S " - I ) )  "----~ 

n n - - 1  - - 3  - -  

I < ¼(Voln-1(sn-1))~':~=2F, " - '  , 

and then as in Theorem 4. 

Theorems 4, 4', 8 could be viewed as the answer to R. Osserman's question 

[Os] on the interpretation of the Banchoff-Pohl inequality [B-P]. 

Let Y be any, not necessarily convex, subdomain in X. We axe going to 

apply the analogue of the Crofton formula (4) in this situation. For this we 

apply (3) to the characteristic function x(Y) of Y and obtain C(n)Vol,(Y) = 
fox  g(')' f3 Y)w "-1. Consider again the restriction (J(OY) of the unit tangent 

bundle U(X) on Q = OY with the canonical volume form cos 8(v)dv A dq and 

and 
K = /yl c ° s ~ Y 2 )  dy2 = l - (yl,y2) 

Here, ~ C UTy I R" denotes the set of all v corresponding to Y2 E Y1 by ~r(yl, v) = 

r (yl ,  y2). By the HSlder inequality we have 
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let 7r: U(OY) ---* CX be as before. For any (q, v) • ~r(OY) let ~(q, v) mean the 

length of the segment of the geodesic rr(q, v), being inside Y till the first after q 

intersection point with OY. Then (see also [Cr2], [Berl]) 

1 J/-u ~(q, v) cos O(v)dv A dq. (15) (n - 1 ) ! C ( n ) V ° l n ( Y )  = (0Y) 

Indeed, this is the direct consequence of the previous formula and the Kronrod 

formula (see [Bu-Za]), applied to the map ~r : U(OY) ---* CX. Let St(q) be the 

set of all y • Y, such that the shortest geodesic segment r(q, y) lies in Y. It is 

natural to call it the star-shaped neighborhood of q. 

THEROREM 6: Suppose the curvature of X is nonpositive. Then there exists 

q • OY, such that 

(16) Vol,(St(q)) > 2Voln_ ,S"- '  ( V o l , ( Y )  ~ 
- \ V o l . _ l ( o Y ) ]  " 

Remark: Let us look at the simplest case X = R n. Suppose Y is not star- 

shaped, i.e. Y # St(q) for any q. Then by the Krasnoselskii theorem (see [Ber3]) 

there exists q • OY, such that 

n 
Vol,(St(q)) < Vol,(Y). 

- n-l- 1 

Our theorem gives an estimate from below on the volume of St(q). 

Proof: From (15) we see that there exists such q • OY, that 

Iv  1 Vol,,(Y) 
U,(X) = UTq(X) ~(q,v)cosO(v)dv > (n 1)-------~.C(n)vol,,-,(OY)" 

,(x) 

By the H6lder inequality and cos 8(v) < 1 we estimate the left side by 

1In n - 1  

,(x) ~'(q'  v)dv] 

because actually the integration is over a half-sphere only. Consider the expo- 

nential map expq : TqX ---* X and let st(q) = exp~-l(St(q)). Then evidently 

Vol,(st(q)) = f g"(q, v)dv 
J u  ~(x) 
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and by the curvature condition Voln(st(g)) _< Vol(St(q)). So 

n-I 
(goln(St(q)))l/n. ( g ° l n - l ~ S n - 1 ) )  "-~" ~> goln_l(Sn-1)V~y),V°ln(Y) 

because C(n)  = n!Vol . (D. )  = (n - 1)!Voln_,(S"- ' ) .  II 

Formula (15) still holds when Y is a domain in a closed oriented manifold X of 

negative curvature. Of course one cannot introduce any smooth structure on the 

set C X  of all geodesics in this situation. But locally it can be done (take a convex 

domain X '  and consider CX' ) .  Let us define the map ~r : ~](OY) --* C X  as before. 

If x E 3' = lr(q, v) then by the curvature condition, all geodesics close to 7 near x 

can be represented as zr(ql,vl) for (ql,v~) close to (q,v), if only 7 is transversal 

to OY at q. Moreover, by the conservation law for the symplectic product of 

Jacobi's field's (see [Be]) we see that 7r*w n-1 = (n - 1)! cos O(v)dv A dq. Consider 

the bundle Iq,~ ~ E-hU+(OY),  where Iq,, = [O,g(q,v)] and the fiber over (q,v) 

is the geodesic segment in ;r(q, v) between q and the next intersection point with 

OY. By [f+(OY) we mean those (q, v) for which [a(v)[ < ~, so g(q, v) > 0. Denote 

by ~r : E --* U(Y)  the map 

d 
#( t ,q ,v )  = (-~s~r(q,V)) s=t" 

We can pull the Liouville form a back to E,  say fl = ~r*a, then dfl = e*(zr*w) 

because da = lr*w and 7r o ~r = Ir o e. For any function f on E we will have 

For a function f on U(Y)  let f = f o ~r. Note that the image ~'(E) has the full 

measure in U(Y)  by the Anosov-Sinai theory (see [An]). This proves (15). 

As a corollary, we obtain the following statement. 

THEOREM 7: Let X be a closed hyperbolic manifold and tet Y be a compact 

domain in X with a smooth boundary OY. Then there exist such (ql ,vl) ,  

(q2,v2) • ~(aY), that 

C(n) Vol.(Y) 
(17)  (ql'l)l) C(n - 1) VOln-l(OY ) e(q2' 1)2)" 
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If we look at an arbitrary Riemannian manifold, we can only say that 7? : E --* 

UY is an immersion, so instead of (15) we will have only an inequality 

1 C(n)Vol,(Y) > fO g(q, v) cos O(v)dv h dq 
(n 1)! - +(or) 

(see [Cr2]) and therefore the right side of (17) still holds for some (q2, v2). 

THEOREM 8: Let X be a closed oriented RJemannian manifold with the injectiv- 

ity radius ri(X) and let Y be a convex domain in X such that diana Y < ri(X). 

Then 

Vol.(Y) Vol.(X) 
(18) C(n - 1) ri(X'------~ < Vol,_I(0Y) _< C(n - 1-----~ ri(X------~ 

Proof." The left side is actually proved in Theorem 2. Now applying the right 

side of (17) to X ,,~ Y, consider a geodesic segment 7 in X ~ Y with the ends 

x, y E OY of the length no more than 

C(n) Vol.(X ~ Y) 
t~ = C(n - 1) Vol,,_l(0Y) " 

By convexity of Y, there exists a geodesic segment 71 in Y with the same ends 

and its length is no more than diam Y < ri(X). By definition of ri(X) if follows 

that _> m 

3, 

In this section we work with eigenvalues of the Laplace and SchrSdinger operators 

on Riemannian manifolds. If X C_ M is a compact domain with a smooth bound- 

ary OX, then by Al(X) we denote the first eigenvalue of the Dirichlet problem 

- A f  = A f ,  f[ox = 0. We need to reproduce first the result of C. Croke [Cr2]. 

THEOREM 9: Suppose X is convex, then 

1 
(19) AI(X) > ~r2n diam2(X). 

Proof: Let g E C~(X) ,  i.e. g is smooth and its support lies in IntX,and let 

f E C~(U(X))  is defined as f (x ,  v) = I@ (v)l 2. Applying (3) we have 
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where a is length parazneter on 3'. By the Poincar6 inequality, 

\~a,]  do. ~ ( 7 ) ~ g 2 d a = r r 2 ~  1 2 
_ 

where (x, v) is tangent to 7 (so g(x, v) = g(7)). Denote 

h(x,v)- g(*) 
t (x , , ) '  

then the last integral can be rewritten as rr 2 f.~ h2(x, v)da, so, again applying (3) 

we have 

c da w "-1 > 7r 2 h ' (x ,v )a  A (da) "-a .  
x (x) 

From the other side, ,~ ^ (do,)"- '  = (n - 1)!d,, ^ d~ (see [Be]), so 

ix,.(s..<.>, .) 
Next, for any linear form ~b, 

fs.- ,  I~(v)lZ dv = l~blz' Vol . (D . ) .  

SO 

(20) Vol.(D.) Idg=lZdx > 7? g2(x)dx e2(x, v) " 
(x) 

1 n - - 1  The integral in the brackets is not less than ~ V o l , , _ a ( S  ), so, finally, 

~r 2 Vol._1(S "-1) 
Ix  Idg*l~ > diam2(X) Vol . (D. )  / xg2(x )dx '  

which is equivalent to (19) by the minimax principle and 

Vol ._l(S "-1) 

Vol.(D.) 
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TIIEOREM 10: Suppose X C_ Y where Y is convex mid has non-positive curva- 

ture, then 

(21) 

Proof.- 

theorem following the construction before Theorem 7. 

integral in the brackets in (20) as 

fu: d---L-° > (Vol._l ( S . _ i ) y  
(x) ~2(x, v) - f~:(x) e~(x, ~)d~ 

Vol,L,(s"- ' )  

(Vol,,(D.)) 2/" 
~,(x)  >_ .2,, (Vol.(X))W, " 

Despite the fact that X may be non-convex, we can do as in the previous 

Now we estimate the 

> 
(fu.(x) O'(x, v)dv)2/" (Vol,,_, (S,,-')) 

Voln~l (S n-I ) 

( f . : (x)  t,,(~,,,)<lO ~1''' 

by the Cauchy inequality and HSlder inequality. Suppose e+(v) and g_(v) are 

the lengths of the two components of 7r(x, v) ,~ {x}, then 

1 e~.(x, v)dv + g'_' (x, v) 
< -2 ( x )  . ( x )  

by the Minkowski inequality. Each of these integrals is no more than nVol,,(X) 

by the curvature condition, so we obtain the following final estimate: 

iu  n )l--I dv > Vol,,_ 1 (S ) 

, ( x )  t 2 ( z ,  v )  - n2l"(Vol,,(X)) ~1''' 

which together with Vol,_ 1 (S " -  1 ) = nVol,, (D,,) completes the proof. 

Remark: If we had the sharp constant in the isoperimetrical inequality (13), 

we would be able to apply the Faber-Krahn-B6rard-Gallot  [Bd] symmetrisation 

argument to get the sharp constant in (21). For the time being, however, the 

constant in (21) seems to be the best possible at least for n > 4. I am thankful 

to the referee for pointing this out to me. 
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Our last result deals with the Schrbdinger operators. Suppose X to be a 

Hadamard (= of nonpositive curvature, simply connected) manifold and fix a 

"pole", p G X. We introduce the harmonic oscillator operator H in L2(X, dx) by 

the formula Hf  = - A f  + p2(p, .)f. When X = R", its spectrum is well-known 

to be (n, n 4. 2, n + 4, ...) and the eigenfunctions are just Hermite functions (see 

[R-S] and also [W] for beautiful topological applications). Our method leads to 

a sharp estimate of the spectrum in the hyperbolic case. 

THEOREM 11: With all the assumptions above, AI(H) > n. 

Proof'. We begin as in Theorem 9 with an identity 

I = f (p2(p,x)g2(x) 4. (dgx(v))2)v~ A ( d o 0  n - 1  
Ju (x) 

Let x0 E 7 be the closest to p point in 7, then by the hyperbolicity, 

p (p, 

SO 

From the theory of the one-dimensional harmonic oscillator we know that 

SO 

Al -d- -~4-x  ~ _>1, 

(22) I >_ / c x  I~(p2(p, xo ) + l )g2(x)da) w"-l. 

We consider p(p, xo) to be a function of the unit vector (x,v) tangent to 7 and 

denote it p(x, v). Of course, p(x, v) is the distance between p and the geodesic 

~r(x, v). Applying (22), we have 

x > [ + ^ 
Ju (x) 
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By the lemma below, 

u= p2(x'v)dv >- (n - 1)Vol.(D.)p2(p,x), 
(x) 

SO 
I >_n[Voln(Dn)J X g2(x)dx +(n -1 ) (n -1 ) ' / xp2 (p , x )g2 (x )dx .  

But 

hence 

which together with the minimax principle proves the theorem. 

LEMMA: Let ABC be a rectangular ( / B A C  = lr/2) geodesic triangle in a 
Hadamardmanifold M. Then IABI > [BCIsinZACB. 

Proof (G. Perelman): Let us cut the side BC into N > 1 equal segments, 

say QoQ1,...,QN-1QN, where Qo = B, QN = C. Let Pi E AC be such that 

the geodesics QiPi.LAC. As the sum of angles of any triangle _< 7r, we have 

ZPiQiC > ~ - ZC. Let Ri E QiPi be such that the geodesics Qi+lRi_l_QiPi. 

Then 

ZQiQi+aRi = ~ - ZPiQiC + 0 

SO (1) 
IQ~RiI_> [QiQi+llsin/C +O ~-i • 

It is clear that 

[QiPil - [Oi+lPi+l[ = [OiR~l + 0 - ~  , 

h e n c e  

I[~oPo' ~ El[~iQi+i[sin~C+O ( N )  • 

We will obtain the inequality lAB] >_ ]BC I sin ZC when N ~ ~ .  

This lemma implies that in the proof of the theorem p(x, v) > p(p, x) sin 0(v), 

where O(v) is the angle between v and the vector tangent to the geodesic px at 

x. The inequMity that we need follows from the formula 

I s  sin 20(v) = 1)Vol,,(D,). ( -  
n-1 
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